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Abstract

This study presents a new hybrid method that combines regression analysis with genetic algorithms for the retrieval of hydrometeors
(cloud liquid water, ice and rain) in the atmosphere, from satellite microwave radiances. A three layered atmosphere model (divided into
30 sub-layers) is used to generate simulated profiles of hydrometeors. The equation governing the transfer of radiation is solved using the
finite volume method to obtain radiances (brightness temperatures) in the microwave region. This is known as the forward problem and
is solved repeatedly to create a database with which regression equations are developed for the monochromatic microwave radiances, for
six typical frequencies ranging from 6.6 to 85 GHz. The regression is done using nonlinear parameter estimation techniques. The inverse
problem of retrieving the hydrometeors characteristics from microwave radiances is accomplished by posing the parameter estimation
problem as an optimization problem, wherein, minimization of the sum of squares of residuals between the estimated and known radi-
ances, for the above mentioned six typical frequencies, is done. In this study, genetic algorithms have been used for solving the minimi-
zation problem.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Precipitation (any form of water that falls on to the
earth’s surface) is an important part of the global energy
cycle, since moisture is an important channel of atmo-
spheric heat transport. The uneven heating of the earth cre-
ates areas of warm air that tend to rise. When the warm air
rises, it leaves behind a gap that’s filled by air from sur-
rounding regions moving in. As the warm air rises it
expands and cools. Since cool air cannot hold as much
moisture, this often results in precipitation (called convec-
tive precipitation). Quantitative assessment of precipitation
is needed to improve the understanding of the behaviour of
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global energy and circulation patterns. Since 70% of the
earth is covered with water, land-based techniques of rain-
fall estimation (for example, raingauges) are not sufficient
for global rainfall estimation. Hence, one uses satellite
remote sensing of clouds and precipitation for global esti-
mation of rainfall. In the remote sensing scenario, an orbit-
ing satellite records radiant energy at wavelengths that
range from the visible, infrared to the microwave regime.
Various algorithms can then be used to estimate rates of
rainfall from the emergent radiant energies.

Compared to visible and infrared observations, satellite
remote sensing using microwave data is a new development
and provides more accurate, instantaneous retrievals, due
to the direct physical relationship between microwave radi-
ation and column cloud, rain water and ice. Many micro-
wave rainfall retrieval algorithms have been developed in
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Nomenclature

Avg_CLW average of cumulative cloud liquid water
content, g m�3

Avg_Ice average of cumulative ice content, mm/h
Avg_Rain average of cumulative rain content, mm/h
BT brightness temperature, K
Clw normalized average of cumulative cloud liquid

water content (refer Table 3)
C1 first Rayleigh–Jeans constant, 0.59552197 �

108 Wlm4 m�2 s r�1

C2 second Rayleigh–Jeans constant, 14387.69
lm K

F,f objective function
g asymmetry factor or function defined in Eq. (4)
I radiation intensity, W m�2 s r�1

I in-scattering term, W m�2 s r�1

Ice normalized average of cumulative ice content
(refer Table 3)

J Jacobian
p parameter vector defined in Eq. (7)
q correction to the parameter vector defined in

Eq. (10)
Rain1 rainfall rate in 1st layer, mm/h
Rain2 rainfall rate in 2nd layer, mm/h
RC normalized average of cumulative rainfall rate

(refer Table 3)
R1, R2 normalized rainfall rate in 1st and 2nd layer,

respectively (refer Table 3)
s coordinate along ray path, m
S residual defined in Eq. (5)
T absolute temperature, K
TB normalized brightness temperature (refer

Table 3)

T �B normalized, known brightness temperature (re-
fer Table 3)

X1 . . . X4 dummy variables used in GA (refer Appendix
A)

z coordinate along vertical direction, m

Greek symbols
e emissivity of surface or damping factor defined

in Eq. (11)
/ azimuthal angle, rad
U scattering phase function
c polar angle, rad
j absorption coefficient, m�1

k wavelength, lm
m frequency, GHz
rs scattering coefficient, m�1

x solid angle, sr
q correlation coefficient

Subscripts

actual already available data
b black body
correlation data obtained using correlation
retrieved retrieved using genetic algorithm
z z direction
k, m spectral quantity

Superscripts

L lower limit
T transpose of the matrix
U upper limit
0 incoming direction
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the last two decades [1–3]. From the reviews, one can see
that, retrieval of precipitation using passive microwave sen-
sors is developing at a rapid pace, with a lot of effort going
towards improving cloud models [4–7] and also retrieval
algorithms [8–10]. Independently, considerable work is also
going on in developing new methods to solve the equation
of transfer with added complexities like polarization and
anisotropic scattering.

The present work is concerned with retrieval of column
rainfall rate, ice content and cloud liquid water simulta-
neously by using the signal (radiance/brightness tempera-
ture) emerging from the top of the atmosphere in the
microwave regime. This signal is frequently referred to as
the TOA (top of the atmosphere) radiance and is recorded
by the passive remote sensing device. The signal results
from the radiant energy which is emitted and scattered by
the surface (either land or ocean), by the clouds, raindrops,
ice and atmospheric gases (such as H2O and O2).

In this numerical study, the forward calculations are
carried out with known atmospheric constituents to obtain
the brightness temperatures. These will be treated as the
satellite measured brightness temperature values for the
inverse problem, in the place of real satellite measured
brightness temperatures. The frequencies used for the for-
ward calculations are m1 = 6.600, m2 = 10.700, m3 = 19.350,
m4 = 22.235, m5 = 37.500 and m6 = 85.000 GHz, respec-
tively. These are selected by noting that these frequencies
are used in passive microwave radiometers such as the
Electrically Scanning Microwave Radiometer (ESMR)
aboard the Nimbus-5 satellite [11], the Scanning Multi-
channel Microwave Radiometer (SMMR) aboard the Nim-
bus-7 satellite [12], the Special Sensor Microwave/Imager
(SSM/I) [13], the TRMM Microwave Imager (TMI) [14],
the Advanced Microwave Scanning Radiometer for Earth
Observing System (AMSR-E) [8]. AMSR-E is the instru-
ment with a set of frequencies that most closely resembles
that used in this paper.

From the review of the literature, one can see that,
often, the procedure that has been used in the literature
for the retrieval of parameters is to solve the direct problem
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Fig. 1. A bird’s eye view of current research vis-à-vis the approach
proposed in the present study in respect of rainfall retrieval algorithms.

Fig. 2. A schematic illustration of passive microwave remote sensing with
distribution and range of hydrometeors.
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repeatedly to calculate the brightness temperatures for dif-
ferent microwave frequencies for a huge set of simulated
profiles (or real profiles). By using the simulated profiles
along with the direct problem results, inverse regression
equations are developed that will estimate the parameters
as a function of the brightness temperatures at different
microwave frequencies. If one looks at the above procedure
carefully, the number of parameters required to calculate
the brightness temperature during the forward problem is
large, but in the retrieval only one parameter is retrieved
from the brightness temperatures at different microwave
frequencies, without considering the effects of other param-
eters. In this study, an attempt is made to simultaneously
retrieve all the parameters that are used in the calculation
of brightness temperature in the forward problem. A new
hybrid approach is proposed, in which the forward prob-
lem of determining the brightness temperature from the
input profiles is carried out through regression analysis.
The inverse problem to retrieve the cloud parameters is
then solved as an optimization problem, utilizing genetic
algorithms (GA). GA comes under the category of non-tra-
ditional optimization algorithms and is used extensively for
problems involving multimodal functions [15–17].

A bird’s eye view of the state-of-the-art in the area of
rainfall retrieval vis-à-vis what we propose to undertake
in this study is given in Fig. 1.
2. Physical model

This is a paper on methodology or, more explicitly, an
exposition of a technique for generating retrieval algo-
rithms. In view of this, the physical model for the precipi-
tating atmosphere is intentionally kept simple. Even so, the
important quantities of interest like column rainfall rate,
ice and cloud liquid water content are present in the model.

The cloud model used in this study is a simple vertically
structured, plane-parallel, horizontally infinite representa-
tion of a raining atmosphere similar to that of [18] and
[19]. Fig. 2 depicts the one-dimensional geometry used
for representing the atmosphere in this study. The bottom
surface is considered to be having a wavelength averaged
emissivity, e. At the top of the atmosphere, cosmic back-
ground radiation at 2.7 K is assumed.

Vertical hydrometeor profiles (including raindrops, ice
particles, and cloud liquid water) are specified from 0 to
12 km, with the atmosphere divided equally into three lay-
ers of height 4 km each. The distribution and range of
hydrometeors within each layer is shown in Fig. 2. The rain
rate is kept constant from the surface to 4 km. Between 4
and 8 km, the hydrometeors are kept constant and are
assumed to be made up of rain, solid ice and cloud liquid
water content. The hydrometeors from 8 to 12 km are
assumed to be kept constant and made up of only solid
ice content. The bottom surface emissivity, temperature
and lapse rate are assumed to be 0.5, 288 K and 6.5 K/km,
respectively. The relative humidity throughout the cloud
is set constant at 90%. This study considers the effect of
surface polarization (only vertical polarization) and atmo-
spheric polarization is ignored. Vertical polarization is
not affected by wind speeds for speeds less than 8 m/s,
and this effectively removes wind speed as a parameter in
the model. Since the focus of this paper is on the demon-
stration of the algorithm, the assumption of a uniform
oceanic emissivity is not expected to severely constrain
the physical model. Furthermore, oceanic emissivities are
known to vary from 0.3 to 0.7 and so the median value also
turns out to be 0.5. This value has also been used by other
investigators (see, for example, Lin and Minnis [20]).

When the algorithm proposed in this study is to be
applied to real data, these assumptions have to be relaxed
and the cloud model will then be necessarily complex.



Table 1
Lower and upper bounds for TOA brightness temperatures for various
frequencies

Frequency (GHz) Range of TOA brightness
temperatures (K)

6.600 150–240
10.700 150–270
19.350 100–270
22.235 120–270
37.500 70–270
85.000 50–260
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3. The forward problem

3.1. Mathematical model

The problem of concern is to numerically determine the
TOA radiances/ brightness temperatures emerging out of
the atmosphere that will have been recorded by the passive
microwave remote sensing device, at a given instant of time
at a given location on the ocean (or land). These will sub-
sequently be used in the retrieval algorithm. The equation
to be solved is the radiative transfer equation that describes
the change in intensity over the path length s for a partic-
ipating medium through which radiative energy travels and
is given by [21]

dIk

ds
¼ �ðjk þ rskÞIkðsÞ þ ðjkIbkðsÞ þ rskIkðs;x;x0ÞÞ ð1Þ

The terms on the right-hand side of Eq. (1) represent
the contributions from absorption, scattering away from
the direction~s, emission, and scattering into the direction
of ~s. In the microwave region (large wavelength or small
frequency), the Rayleigh–Jeans formula is used to repre-
sent the blackbody intensity and is given by

Ibk ¼
2C1T ðzÞ

C2k
4

ð2Þ

Since the microwave radiant intensity or radiance is di-
rectly proportional to temperature, T(z) is interpreted,
and known, as the brightness temperature. The in-scatter-
ing term is given by

Ikðs;x;x0Þ ¼
1

4p

Z 4p

x0¼0

Ikðs;x0ÞUkðx;x0Þdx0 ð3Þ

The anisotropic scattering property of the particles in the
atmosphere is approximated by retaining only a certain
number of terms of the Legendre polynomial series expan-
sion. In this study, a linear anisotropic scattering model is
used, in which only the first two terms of the series are
used. The phase function has the following mathematical
representation [22].

Uðk;x;x0Þ ¼ 1þ 3gðk; zÞðcosc0 coscþ sinc0 sinccosð/0 �/ÞÞ
ð4Þ

The details of the finite volume formulation of the gov-
erning time-independent radiative heat transfer equation
and its method of solution are available in references like
[23] and [24], and hence for brevity are not discussed here.
The finite volume method is justified because it is demon-
strably a superior algorithm [25,26] when heavy scattering
is involved, as for example in a raining atmosphere, like the
one considered in this study. The effect of the grid size on
the solution is studied in a manner similar to that reported
in [24] in order to fix the optimum number of control vol-
umes and the number of directions. Accordingly, the num-
ber of directions was fixed at 20 and the number of control
volumes within a layer was fixed at 10. The conversion of
atmospheric constituents in each layer to its corresponding
asymmetry factor, absorption and scattering coefficients
was carried out using a program developed by Kummerow
[27].
3.2. Results for the forward problem

Validation of the forward problem along with the
results is documented in [25]. Even so, for the sake of com-
pleteness, we present some salient features of the results
that will help us better understand the complexities that
can be expected in the retrieval process. The variation of
the brightness temperatures with respect to the cloud liquid
water content was found to be weak compared to their var-
iation with respect to rainfall rate and ice content. While at
high frequencies, when the rainfall changes from 0 mm h to
49 mm h, the brightness temperature can be pulled down
by as much as 200 K for a given ice content and cloud
liquid water content, at high frequencies the effect of cloud
liquid water content on the brightness temperature is
almost negligible. The effect of ice content is in between
and it becomes pronounced at higher frequencies. How-
ever, the effect of rain on the brightness temperatures is
strong at all frequencies, including the lower ones (6.6
and 10. 7 GHz). For a no raining case, with negligible
ice content, the presence of clouds can bring down the
brightness temperatures only to the extent of about 30 K
and this decrease tapers off at higher frequencies. It is

now intuitively apparent, that retrieval of cloud liquid water

in a raining atmosphere will be very difficult. We will return
to this point in Section 5. The effects of various parame-
ters are succinctly presented in Tables 1 and 2. While
Table 1 gives the lower and upper bounds of the TOA
satellite signal, i.e. the brightness temperatures for vari-
ous frequencies, for the assumed physical model, Table 2
gives a qualitative idea of the effect of various parame-
ters on the brightness temperatures for the six frequen-
cies under consideration and can be called as a trend
analysis.

The above findings can be concisely summarized as (1)
emission is dominant at 6.6 and 10. GHz (2) scattering is
dominant at 37.5 and 85 GHz and (3) both emission and
scattering are significant at 19.35 and 22.235 GHz.



Table 2
Trend analysis for the results of the forward model

Frequency
(GHz)

What happens to brightness temperature
With increase in rainfall rate

With no ice content With increase in ice content

6.6 Increases Increases
10.7 Increases For low ice content – increases

For high ice content – increases and
then decreases

19.35 Increases and becomes
constant

Increases and then decreases

22.235 Increases and becomes
constant

Increases and then decreases

37.5 Increases and becomes
constant

For low ice content – increases and
then decreases
For high ice content – decreases

85 Increases and becomes
constant

Decreases
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4. The inverse problem–hybrid method

The inverse problem refers to the full blown retrieval of
all the parameters that affect the forward calculations. Sta-
ted more explicitly, for a set of frequencies if the brightness
temperatures are known or measured, one needs to determine

the atmospheric constituents that led to those brightness tem-

peratures. In the parlance of optimization, this problem is
referred to as a parameter estimation problem. While several
techniques are available for estimation of parameters, the
retrieval gets increasingly difficult when (1) the number of
parameters becomes large and (2) there is complex interplay
between the variables or the effects they cause. A highly reli-
able approach would be to pose the parameter estimation
problem as an optimization problem wherein we minimize
the ‘‘error” between the known brightness temperature val-
ues (referred to as measured values) and the calculated
brightness temperature values corresponding to the fre-
quencies under consideration. The ‘‘error” referred to above
is in a least squares sense. Optimization algorithms that use
the least square approach are known as LSR (least square
residual) techniques. Typically, the first step in an LSR
approach would be to calculate the dependent variable, in
this case the brightness temperatures using the forward
model, by assuming some guess values for the unknown
parameters. Corresponding to the error between the known
brightness temperature values with that of calculated bright-
ness temperature values, by using some optimization algo-
rithms, subsequently new values will be assigned to the
unknown parameters until the error gets minimized to an
acceptable value. The corresponding final values of the
unknown parameters will give the corresponding atmo-
spheric constituents which gave rise to the known brightness
temperatures. In view of the highly complex nature of the
problem under consideration, in this study, the optimization
is carried using genetic algorithms (GA), a multidimensional
search technique that mimics the process of evolution.

For the problem under consideration, since the forward
calculations of brightness temperatures have to be carried
out a number of times in order to obtain the final values
of the unknown parameters for just one set of atmospheric
profiles, in reality there will be a huge data set of bright-
ness temperatures corresponding to number of different
atmospheric profiles obtained through observations from
remote sensing satellites. In view of this, it will become
impossible to run through the forward calculations again
and again, as this would involve a large amount of com-
puter time. In order to speed up the retrieval algorithm,
the procedure described below is used to develop relations
between the brightness temperature and parameters of
interest and these relations are used to calculate brightness
temperatures instead of using forward calculations repeat-
edly. Here again, we take recourse to nonlinear parameter
estimation techniques. In effect, for both the forward and

inverse calculations, we have employed optimization tech-

niques in this study.

Approximately, 21,000 profiles were ‘‘synthetically” gen-
erated by varying the hydrometeor content in each layer,
within the range specified in Fig. 2, out of which 15,000
profiles were used to generate the regression equations
and the remaining 6000 were used for validation purposes.
Use of synthetically generated profiles offers an alternative
to the use of field data and is frequently used in the evalu-
ation of new retrieval algorithms. The main advantage of
this approach is the ability to generate any number of pro-
files to be used for creating a database and this removes the
difficulty posed by limited datasets obtained from field
measurements (see [28] who discuss a numerical method
for synthesizing atmospheric and humidity profiles).

The synthetically generated profiles were used, in con-
junction with the finite volume method outlined in Section
3, to evaluate the TOA brightness temperatures, at a gen-
eric viewing angle of 50� (normal viewing angles vary from
50� to 55 �) for frequencies 6.6 GHz, 10.7 GHz, 19.35 GHz,
22.235 GHz, 37.5 GHz and 85 GHz.

4.1. Normalization

All the parameters involved in the current study are nor-
malized with respect to their maximum possible values
shown in Table 3. Normalization is carried out with a view
to have smaller values for the coefficients in the regression
equations and to ensure that the range of all variables gets
fixed between 0 and 1. This also helps in reducing some
effort needed to code the variable limits in the optimization
analysis, which is used for solving inverse problem in the
current study.

4.2. Forward calculations using regression analysis

Regression equations were developed using the gener-
ated data set, to obtain brightness temperature for each fre-
quency in terms of cloud liquid water content, rainfall rate
and ice content using the commercially available DATA-
FIT 8.1 [29]. Here again, the parameters in the regression
equation are determined by minimizing the error between



Table 3
Normalization for various parameters

Parameters Maximum
value in 1st
layer

Maximum value
in 2nd layer

Maximum
value in 3rd

layer

Average of the maximum
value for three layers

Normalization Symbol

Brightness temperature – – – – BT/288 TB, T �B
Cloud liquid water 0 1.0 0 0.334 Avg_CLW/0.334 Clw

Ice content 0 24.5 12.25 12.25 Avg_Ice/12.25 Ice

Rainfall rate in 1st layer (mm/h) 49 – – 49 Rain1/49 R1

Rainfall rate in 2nd layer (mm/h) – 24.5 – 24.5 Rain2/24.5 R2

Cumulative rainfall rate (mm/h) 49 24.5 0 24.5 Avg_Rain/24.5 RC
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the sum of the squares of residuals between the regression
model and the data using the Levenberg–Marquardt algo-
rithm (LMA) with double precision. LMA is capable of
solving nonlinear equations and returning the coefficients
of the supplied regression model. In what follows, a brief
discussion on the LMA is presented. The generalized prob-
lem of least squares minimization, concerning the bright-
ness temperature for a particular frequency, can be stated as

S ¼
Xn

i¼1

½T �B � T BðR1;R2;Clw; IceÞ�2 ð5Þ

Eq. (5) can be rewritten as

SðpÞ ¼
Xn

i¼1

½giðpÞ�
2 ð6Þ

where p is the parameter vector given by

pT ¼ ðR1;R2;Clw; IceÞ ð7Þ
and gi ¼ T �B � T BðR1;R2;Clw; IceÞ ð8Þ

LMA is an iterative technique, like most other numerical
minimization algorithms. The minimization starts with an
initial guess for the parameter vector, p. In every iteration,
p is replaced by a new estimate (p + q). This is done as
follows:

gðp þ qÞ � gðpÞ þ Jq ð9Þ
where J is a matrix of partial derivatives of g taken with re-
spect to the parameters and is known as the Jacobian. The
derivatives in many problems (including the present one)
are numerically determined.

A minimum for S is being sought and so $S = 0, leading
to

ðJ TJÞq ¼ �J Tg ð10Þ
q can be determined from the above equation by inverting
(JT J). An important feature of the LMA is the use of a
‘‘damping” in Eq. (10), given by

ðJ TJ þ eÞq ¼ �J Tg ð11Þ
In Eq. (11), e is a non-negative damping factor and can be
increased or decreased depending on the reduction in S.
The iterations stop when S reduces to a predefined limit
(convergence criterion).

In this study, both, linear and nonlinear forms of regres-
sion equations were tried with the help of an option called
‘‘user defined model” in DATAFIT. The following final
forms of the equations were chosen, based on the nature
of the curves obtained from the sensitivity analysis and also
by looking at the indices of the correlations obtained. Out-
side of these, the validity of the equations was also checked
for different profiles which are not used for generating the
regression equation.
4.2.1. Regression equations for frequencies 6.6 GHz and

10.7 GHz

T B ¼ a1R1 þ a2Clw þ a3R2 þ a4Ice þ a5 þ a6R2
1

þ a7C2
lw þ a8R2

2 þ a9I2
ce þ a10R1Clw þ a11R1R2

þ a12R1Ice þ a13ClwR2 þ a14ClwIce þ a15R2I ce ð12Þ

where for 6.6 GHz: a1 ¼ 0:4065; a2 ¼ 0:1010; a3 ¼ 0:1832;
a4 ¼ �0:0393; a5 ¼ 0:5181; a6 ¼ �0:0845; a7 ¼ �0:0108;
a8 ¼�0:0273; a9 ¼�0:0279; a10 ¼�0:0806; a11 ¼�0:1304;
a12 ¼�0:0229; a13 ¼�0:0185; a14 ¼�0:0005; a15 ¼ 0:0085;
for 10.7 GHz: a1 ¼ 0:7958; a2 ¼ 0:1710; a3 ¼ 0:1220; a4 ¼
�0:2425; a5 ¼ 0:5787; a6 ¼�0:4351; a7 ¼�0:0330; a8 ¼
�0:0375; a9 ¼�0:0194; a10 ¼�0:2043; a11 ¼�0:1494;
a12 ¼�0:0027; a13 ¼�0:0047; a14 ¼ 0:0077; a15 ¼ 0:0596.
4.2.2. Regression equations for frequencies 19.35 GHz and

22.235 GHz

T B ¼ a1 þ a2 lnðR1Þ þ a3Ca12
lw þ a4 lnðR2Þ þ a5 lnðI ceÞ

þ a6Ra11
1 þ a7Ra10

2 þ a8Ia9
ce ð13Þ

where for 19.35 GHz: a1 = 1.17738; a2 = 0.07525; a3 =
0.04608; a4 = 0.00247; a5 = 0.00652; a6 = �0.22653; a7 =
�0.09054; a8 = �0.49170; a9 = 0.61053; a10 = 0.66175;
a11 = 0.42990; a12 = 0.32656; for 22.235 GHz: a1 =
1.31005; a2 = 0.06624; a3 = 0.00035; a4 = 0.00154; a5 =
0.00387; a6 = �0.36959; a7 = �0.07465; a8 = �0.39984;
a9 = 0.73184; a10 = 0.51273; a11 = 0.22472; a12 =
�0.01636.
4.2.3. Regression equations for frequencies 37.5 GHz and

85 GHz

T B ¼ a1 þ a2 lnðR1Þ þ a3Clw þ a4 lnðR2Þ þ a5 lnðIceÞ
þ a6R1 þ a7R2 þ a8Ia9

ce ð14Þ
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where for 37.5 GHz: a1 = 5.38629; a2 = 0.01211; a3 =
�0.01892; a4 = �0.01807; a5 = 0.30366; a6 = �0.06730;
a7 = 0.02924; a8 = �5.14015; a9 = 0.10625; for 85 GHz:
a1 = 0.07211; a2 = �0.00243; a3 = �0.01546; a4 =
�0.00447; a5 = �0.13484; a6 = �0.03928; a7 = 0.02383;
a8 = 0.17900; a9 = 1.25536.

Plots that show the comparison between the actual
brightness temperature (data set) and the brightness tem-
peratures calculated using the above regression equations,
for all the frequencies from 6.6 to 85 GHz, along with
the indices of the correlations, are presented in Fig. 3.

A closer look at the above regression equations reveals
several interesting features: (1) the presence of mixed or
cross terms involving more than one variable denotes the
complex interplay of the variables and (2) at higher fre-
quencies both the rain rate and the ice content support a
logarithmic relationship again signifying the nonlinearity,
while the cloud liquid water content does not need a loga-
rithmic term. The above discussion serves to prove that
obtaining the forward regression equations (1) is not a rou-
tine mathematical exercise (2) involves considerable effort
and tweaking and (3) is not trivial.
4.3. Inverse calculations using genetic algorithms

Here, the problem of concern is the retrieval of atmo-
spheric constituents (Cloud Liquid Water Content, Rain-
fall Rate, and Ice Content) from the known brightness
temperatures at different microwave frequencies. The prob-
lem can be solved by minimizing the objective function,
which is again expressed as a sum of the square of the resid-
uals between the calculated and known brightness temper-
ature as follows:

f ¼
X6

mi¼1

½T B � T �B�
2
mi

ð15Þ

In this study, the optimization is carried out using GA, as
already mentioned. Since GA works with only maximiza-
tion problems [30], as is expected of any evolutionary opti-
mization technique, the objective function is modified as

F ¼ 1

,
1þ

X6

mi¼1

½T B � T �B�
2
mi

 !
ð16Þ

GA is a robust parameter search technique based on the
mechanics of natural genetics and natural selection. Unlike
calculus-based methods, GA neither depends on the exis-
tence of derivatives nor on the initial values. Traditional
optimization algorithms will converge to the minimum only
if the objective function has only one broad minimum.
Since the present objective function is nonlinear and multi-
modal, traditional optimization algorithms converge to a
local minimum, which depends on the initial guess values.
Results (not presented here) using a traditional optimiza-
tion algorithm ‘‘sequential quadratic programming” con-
firmed that the final results depend on the initial guess
and hence such algorithms are not suitable for the present
problem. Thus, in this study, GA, which is very attractive
and widely used for applications where the objective func-
tion is highly nonlinear and multimodal, is employed for
the process of optimization. GA works iteration (genera-
tion) by iteration, successively generating and testing a pop-
ulation of strings. In the first generation, an initial
population, which is a set of individuals (design parameters)
each of which is represented in binary-coded strings, is ran-
domly generated within the range of parameters. After eval-
uating the fitness of each individual, fitter individuals are
selected for ‘‘reproducing” ‘‘offsprings” for the next gener-
ation. The selection process is determined by the objective
function values. Some of the selected individuals are chosen
to find mates and undergo the crossover operation, which is
a reproduction process that makes offsprings by exchanging
the ‘‘genes” of the ‘‘parents” to improve the fitness of the
next generation. Then, some of the offsprings are chosen
for the operation of ‘‘mutation” that preserves the diversity
of a population. This is done by changing some of genes of
the selected individual(s) within the range of design space
and is done sparsely ( typical mutation rates are less than
5%, i.e. if the solution space involves 1000 bits, less than
50 bits will be changed) and stochastically. Because there
is no guarantee that GA will produce a monotonic improve-
ment in the objective function value with variance of gener-
ation, due to its stochastic nature, an elitist strategy is used
to ensure a monotonic improvement by copying the best
individual of the present generation on to the next genera-
tion. Once the first generation is completed, the iterations
will not stop until a satisfactory solution is reached. The
highlights of the GA code used in the present study are (i)
in the reproduction phase, fitter individuals are selected
using tournament selection operator; (ii) uniform crossover
operator, where cross over refers to exchange of bits be-
tween solutions similar to exchange of genetic information
in reproduction is used; and (iii) instead of mutation, micro-
GA is implemented. Details of the algorithm are explained
with an example in Appendix A.

4.3.1. Solution procedure

The equations developed for the forward problem ((12)–
(14)) using nonlinear regression analysis are used to obtain
the brightness temperatures ðT B;mi¼1��6

Þ. T �B are the known
brightness temperatures which are taken from the data
set developed by solving the 6000 profiles that are not used
for developing regression equations. TB is a function of R1,
R2, Clw, Ice and T �B is the known data. Hence, the objective
function F is a function of only R1, R2, Clw and Ice. There-
fore, R1, R2, Clw and Ice are the design parameters for the
GA and all of these range from 0 to 1 (all parameters were
normalized with respect to the respective maximum value).
The constraints used to solve this problem along with Eq.
(16) are

1. Variable constraint (0 6 (R1, R2, Clw, Ice) 6 1)
2. Inequality constraints



Fig. 3. Comparison between actual and correlated values of brightness temperature for different frequencies: (a) 6.6 GHz; (b) 10.7 GHz; (c) 19.35 GHz; (d)
22.235 GHz; (e) 37.5 GHz; and (f) 85 GHz.
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(a) 0 6 T B;mi¼1��6
6 1;

(b) R2 < R1.
The variable constraints are taken care of while generat-
ing the population itself, such that all variables created will
lie between 0 and 1. The inequality constraints are added to
the objective function with a penalty parameter, such that if
the constraint is violated, the penalty terms will become
active. Inequality constraint 2b deserves special mention.
It corresponds to the criterion that the rainfall in the 2nd
layer cannot exceed that of the 1st layer – a thermodynamic
necessity. The number of bits used to represent each vari-
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able is taken as 10. The population size employed in this
study is 14 and hence the GA will start by generating ran-
domly 14 initial parameter sets of (R1, R2, Clw, Ice). For
all these parameter sets, TB is calculated for all the frequen-
cies using (12)–(14). Using the objective function value, fit-
ness is assigned to each parameter set. Using the fitness
values, reproduction and crossover operators will deter-
mine the next 14 parameter sets of (R1, R2, Clw, Ice). The
process repeats itself until a close enough fit is achieved.
The maximum number of generations used is fixed at 250.
The values of the number of bits, the population size and
the number of generations indicated were determined by
running a number of test cases with different combinations
of these numbers. Those that gave better results in terms of
computational economy and accuracy were finally selected.

5. Results

The parameters obtained through GA by using the
brightness temperature values of the 6000 profiles which
Fig. 4. Comparison between actual values and estimated values using genetic al
The error band in (a) and (b) is ±30%. Symbol � represents parameters retr
equations.
were not used for generating regression equations are plot-
ted against the actual parameter values of the 6000 profiles
and these are shown in the scatterogram (Fig. 4). A closer
look at Fig. 4a shows that there is over prediction at low
rainfall rates and underprediction at higher rainfall rates.
Even so, the error band is within ±30% which is considered
as acceptable in satellite meteorology. As far as Fig. 4b that
corresponds to average rainfall rate is concerned, this bias
is significantly reduced, though the error band remains the
same. From both the figures, it can be observed that, as
expected, the predictions get worse at lower rainfall rates,
where the scattering is not so strong. From Fig. 4d, it is
seen that the retrieval of ice content is very good with very
little scatter. Furthermore, as expected, due to the nature of
the problem where cloud liquid water has negligible influ-
ence over brightness temperature in the presence of rain
and ice, it is not possible to estimate the cloud liquid water
content (the large scatter is seen in Fig. 4c), where as the
other parameters such as precipitation (1st layer rainfall
rate), cumulative rainfall rate and cumulative ice content
gorithms for 6000 profiles which were not used for developing correlations.
ieved by using direct formulation repeatedly instead of using regression
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are satisfactorily estimated. The error in the retrieval of
parameters is not due to the retrieval algorithm used per

se but is because of (1) the nature of the problem and (2)
the error present in the forward regression equations.

The results of inverse problem for five different atmo-
spheric profiles, in which optimization is carried out by
running the direct problem repeatedly instead of using
regression equations are also plotted in Fig. 4 and these
are represented using white circles (see Swaminathan [31]
for a fuller discussion on the inverse regression analysis
approach). Even though the results turn out to be good,
the time consumed for solving each profile is very high in
comparison and makes this method impossible for practi-
cal purposes. By running the direct problem repeatedly
instead of using regression equations, the time consumed
for retrieving parameters from a single profile roughly var-
ies between 90 and 120 min on a 1 GB RAM, Pentium 4
processor, whereas, for the case of using regression equa-
tions along with GA, it takes only 9.6 min for retrieving
the parameters from a set of 6000 profiles on a computer
with the same configuration. If better regression equations
are developed for the forward problem and used in the
retrieval, then the error in the parameter estimation is
expected to decrease. Future studies in the direction of
improving forward regression models, hopefully may be
able to decrease the errors associated with full blown
retrievals.

6. Conclusions

In this study, a new hybrid regression/genetic algorithm
method for the retrieval of hydrometeors from microwave
radiances has been proposed. A finite volume method is
used to solve the forward problem that employs a three lay-
ered model for the precipitating atmosphere, to determine
the top of the atmosphere radiances. These radiances are
used in the retrieval algorithms to minimize the error with
respect to the satellite measured radiances. A sensitivity
analysis using synthetic profiles of atmosphere and a trend
analysis that elucidates the hidden physical insight are pre-
sented. A hybrid method has been developed to estimate
the atmospheric constituents. This combines regression
analysis for the brightness temperatures for six different
microwave frequencies from the known atmospheric pro-
files for the forward problem with GA for the inverse prob-
lem. Forward regression analysis, along with inverse
analysis using GA, estimates the precipitable rainfall rate
and column average rainfall rate to within ±30% of the
actual data and the estimated ice content represents the
actual data very well. The results show that the presence
of cloud liquid water content has negligible influence over
the brightness temperature in the presence of rain and
ice. Hence, the retrieval of cloud liquid content is not pos-
sible in the presence of other constituents when radiative
transfer models that include scattering are made use of.

In this work, the focus was on developing a fast and
efficient technique for the ‘‘simultaneous” retrieval of
hydrometeors. The technique involves the use of contem-
porary optimization techniques for both the forward and
the inverse problems. In order to keep the problem tracta-
ble, the number of parameters to be retrieved was kept
small, by design. This necessitated the use of a simple
model for the precipitating atmosphere. Even so, extension
to situations involving simultaneous retrieval of more num-
ber of parameters with a more complex atmosphere model
is completely feasible within the framework presented in
the paper.
Appendix A. Genetic algorithms through an example

Consider the problem that was solved in Section 4.3. In
what follows, the basic GA operators: Reproduction,
crossover and micro-GA are detailed out. As the con-
straints would not play a role in the demonstration of the
three operators in GA, they are ignored.

The objective function without constraints is

F ¼ 1

1þ
P6

mi¼1
ðT B � T �BÞ

2
mi

� � ð17Þ
TB’s are calculated using Eqs. (12)–(14).
F is a function of (R1, Clw, R2, Ice).
A.1. Input For GA

� Let the known values of T �B (normalized) be (0.8100,
0.8128, 0.2684, 0.6645, 0.3923, 0.2458) corresponding
to the frequencies (6.600, 10.700, 19.350, 22.235,
35.500, 85.000) in GHz, respectively.
� Since F is a function of four variables (R1, Clw, R2, Ice);

Number of parameters = 4 and let these be denoted by
X1, X2, X3, X4.
� String length (Number of bits used to represent each

variable) = 10.
� Population size = 14.
� Since all the variables are normalized, the upper and

lower limit for each variable can be taken as
0.001 6 Xi 6 1.0; where i = 1,2,3,4.
� Total number of generations equivalent to the number

of iteration in a numerical solution is taken as 250.
A.2. Steps involved in GA

GA works iteration (generation) by iteration. Here, the
steps involved in a single generation are explained.

An initial population, which is a set of individuals
(design parameters), each of which is represented by a bin-
ary-coded string, is randomly generated within the range of
parameters as shown in Table A.1.

The number of zeros in the above Table is 277 and
the number of ones is 283 and can be considered as con-
firming that the random number generation is random.



Table A.1
Initial population set in a binary code representation

# Binary code

X1 X2 X3 X4

1 1110101011 0011101111 0111100111 0001110101
2 0101010010 0001011000 0100110010 1100000110
3 1110110010 1001100101 0001100100 1100111000
4 0011000111 1000011111 0111100110 0000010001
5 1101000100 0110001010 0011100110 1101101100
6 1100001100 1100100000 0001101010 0001011111
7 1111000010 0110011111 0001011111 1001001110
8 1000101001 1010110101 1001110011 1000101111
9 1000111101 1001100101 1100000000 1101100101

10 1001011001 1011010001 1011110000 0111100100
11 1111010000 0100011100 0010100010 1100001000
12 1000110111 1011101100 1101010101 1110000101
13 0110011100 1011111110 0000011111 0001111010
14 0110001100 1101000111 0111010100 0111101111

Table A.3
Mating pool selection using fitness values

# Binary code Fitness Mating
pool

X1 X2 X3 X4

1 1110101011 0011101111 0111100111 0001110101 0.90221
2 0101010010 0001011000 0100110010 1100000110 0.92212  
3 1110110010 1001100101 0001100100 1100111000 0.95871  
4 0011000111 1000011111 0111100110 0000010001 0.71157
5 1101000100 0110001010 0011100110 1101101100 0.94481  
6 1100001100 1100100000 0001101010 0001011111 0.85619
7 1111000010 0110011111 0001011111 1001001110 0.9946  
8 1000101001 1010110101 1001110011 1000101111 0.99352
9 1000111101 1001100101 1100000000 1101100101 0.9368

10 1001011001 1011010001 1011110000 0111100100 0.99847  
11 1111010000 0100011100 0010100010 1100001000 0.96692  
12 1000110111 1011101100 1101010101 1110000101 0.92817
13 0110011100 1011111110 0000011111 0001111010 0.85718
14 0110001100 1101000111 0111010100 0111101111 0.99291  
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The binary-coded strings are decoded to obtain the actual
values as

X i ¼ X ðLÞi þ
X ðUÞi � X ðLÞi

2li � 1
decoded value ðX iÞ ð18Þ

For example, consider the first entry in Table A.1

X ð1110101011Þ ¼ 0:001þ 1� 0:001

210 � 1
� 939 ¼ 0:9180

The actual values are shown in Table A.2.
For each parameter set, the objective function value is

calculated with the regression equations developed earlier
(Eqs. (12)–(14)) to assign fitness (Eq. (17)). Here, the value
of objective function itself is taken as the fitness value and
the fitness values for the initial population are shown in
Table A.3.

A.2.1. Reproduction

Selects good strings in the population and forms a mat-
ing pool. Here, tournament selection is used.

Tournament selection is based on the general rule that is
followed in any tournament. In a cricket or tennis tourna-
Table A.2
Actual values of the initial population set

# Actual values

X1 X2 X3 X4

1 0.9180 0.2344 0.4766 0.1153
2 0.3311 0.0869 0.2998 0.7568
3 0.9248 0.5996 0.0987 0.8057
4 0.1953 0.5313 0.4756 0.0176
5 0.8174 0.3858 0.2256 0.8564
6 0.7627 0.7822 0.1045 0.0938
7 0.9404 0.4063 0.0938 0.5772
8 0.5410 0.6777 0.6133 0.5469
9 0.5606 0.5996 0.7510 0.8496

10 0.5879 0.7051 0.7354 0.4736
11 0.9541 0.2783 0.1592 0.7588
12 0.5547 0.7315 0.8340 0.8809
13 0.4033 0.7490 0.0313 0.1201
14 0.3877 0.8203 0.4580 0.4844
ment for example, to select one, two teams will play and the
winner will be selected. This continues till all the winners
are selected. Here too, the same method is followed and
hence it is called tournament selection. The process of
selecting the mating pool from the given population is
shown in Table A.3.

The average fitness of the population in Table A.3 is
0.926, with the maximum fitness being 0.9984 and the min-
imum fitness being 0.7116.

As shown in the Table A.3, out of first two parameter
sets, the one that has higher fitness value is selected for
the mating pool (shown by an leftward pointing arrow
mark). Similarly out of the next two, the one that has
higher fitness value is selected for the mating pool and
the process continues till sufficient entries are available in
the mating pool that can produce a new population set
equal to that of current one. In the current procedure,
the mating pool should have entries equal to that of origi-
nal population. Hence, from the above Table, it is possible
to get only half of the number of population in the mating
pool. In order to get the other members in the mating pool,
the initial population set is shuffled randomly and again
the process continues to select the remaining parameter
set to complete the selection procedure for the mating
pool. In the process good strings (high fitness value) will
have large number of copies. The mating pool is shown
in Table A.4.
Table A.4
Mating pool with pairs of parents ready for crossover operator

# Mating pool Parent

X1 X2 X3 X4

1 0101010010 0001011000 0100110010 1100000110 1
2 1110110010 1001100101 0001100100 1100111000 2
3 1101000100 0110001010 0011100110 1101101100 1
4 1111000010 0110011111 0001011111 1001001110 2
..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
.



Table A.5
Crossover operation for a single parameter

Parent (X1) Child (X1) after ‘‘crossover”

1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0
2 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0
Random number 0.7 0.1 0.9 0.0 0.3 0.5 0.2 0.8 0.6 0.4
Exchange bit Y N Y N N N N Y Y N
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A.2.2. Crossover

In the mating pool, the first two parameter sets form one
pair of parents (Table A.4) that will be involved in the next
set of operations to produce two parameter sets (called
child), by exchanging information among themselves. This
process is called crossover. There are different crossover
operators available. In this study, uniform crossover is
used. In this type of crossover, for each bit, the decision
to exchange the bits between the parents is made depending
on the probability of crossover. The process of crossover
for a parameter from the parent to child is shown in Table
A.5 for a probability of crossover equal to 0.5.

The process of selection to decide whether to exchange
the bits between the parents is carried out using a random
number generator and the random number generator is
allowed to generate numbers between 0 and 1. Since the
probability of cross over is fixed as 0.5, if the random num-
ber turns out to be greater than 0.5, the corresponding bits
are exchanged (in Table A.5 ‘‘Y” indicates yes and ‘‘N”

indicates no to exchange of bits).

A.2.3. Micro-GA

Here, the bits of the best fitness parameter set are com-
pared with corresponding bits of all other parameter sets,
and if the number of bits which are different from the best
parameter set are less than 5% of total number of bits pres-
ent in the total population, then the algorithm considers
the population as converged and retains only the best fit-
ness parameter set and replaces all other parameter sets
Table A.6
Final parameter set at the end of 250 generations

# Binary code Fitness

X1 X2 X3 X4

1 1011010011 1110101100 1111111111 0110101000 0.99963
2 1011010011 1110110100 1111110111 0110101000 0.99963
3 1011011011 1110100010 1111110111 0110101000 0.99963
4 1011010011 1110101000 1111111111 0110101000 0.99963
5 1011010011 1110100100 1111111111 0110101000 0.99963
6 1011010001 1110100010 1111111111 0110101000 0.99963
7 1011010111 0110111000 1111111111 0110101000 0.99941
8 1011010011 1110100100 1111111111 0110101000 0.99963
9 1011010011 1110100010 1111110111 0110101000 0.99963

10 1011010001 1110100010 1111110111 0110101000 0.99963
11 1011011011 1111110000 1111111110 0110101000 0.99961
12 1011010011 1110100000 1111111111 0110101000 0.99963
13 1001010011 1110101100 1111111111 0110101000 0.99939
14 1011110011 1110100000 1111110111 0110101000 0.99960
with a new parameter set created, randomly as was done
in the first step. Hence, the micro-GA implementation will
not occur in every generation, but only if this condition
arises.

The above steps constitute one generation and will
repeat till convergence. In the present study, the number
of generations is fixed at 250, based on experience gained
by repeating the process for several test cases.

At the end of the 250 generations, the set of parameters
obtained are shown in Table A.6.

The average fitness of the final population is 0.99959
with the maximum and minimum fitness varying by just
2.4 � 10�4. With GA not only have we achieved conver-
gence, but the variation of fitness or quality within the pop-
ulation is also significantly reduced.
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